
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 2, Issue 1, May (2015)

ISSN: 2395-5317 ©EverScience Publications 68

Simulation Based Analysis of TCP Friendly Rate

Control in Wired Environment

P. Balakoteswara

M. Tech (Computer Science), CSE Dept., JNTUA College of Engineering, Anantapuramu, A.P, India.

C. Shoba Bindu

Associate Professor, CSE Dept., JNTUA College of Engineering, Anantapuramu, A.P, India.

Abstract – The traditional Internet is primarily designed to

support non-real time traffic such as data in text and images. Now

a days and in coming few years the real-time streaming media

traffic such as video and audio traffic is going to become dominant

traffic type. The bulk insertion of additional video traffic by many

applications over Internet can cause a serious problem called

congestion collapse which leads to performance degradation

particularly for real time traffic. So this congestion should be

controlled for getting better performance in multimedia

applications. Transmission Control Protocol (TCP) supports

congestion control techniques but up to some limits in higher rates

and not suitable for real time media traffic. User Datagram

Protocol (UDP) doesn’t support any congestion control

mechanisms and also unreliable, causing instability in the

Internet. TCP Friendly Rate Control (TFRC) protocol a reliable,

congestion control and end-to-end protocol, is more suitable for

real-time streaming data because of smooth sending rate and

friendliness with TCP flows achieved it. This paper shows the

complete study of TFRC and performance of TFRC is compared

with TCP Flows such as TCP New Reno, TCP Vegas, TCP Reno,

and TCP Tahoe and also with UDP in wired environment.

Index Terms - TCP Friendly, Congestion Control, media traffic,

TFRC, NS-2.

1. INTRODUCTION

Today’s Internet is in search of a reliable and congestion

control protocol even for multimedia traffic without losing its

fair share of bandwidth over Internet. The present Internet

infrastructure only provides best-effort service for non-real

time traffic. Most of the major traffics of today’s Internet are

covered by real time streaming media applications such as

video on demand, game playing, video conferencing systems

etc. So this much of heavy video traffic on Internet is causing

congestion collapse [1].

Transmission Control Protocol (TCP) [2] is a reliable and

congestion control protocol [10] [20] but at higher rates it

won’t show its effectiveness. TCP Congestion Control

mechanism reduces the sending rate by half in response to even

a single packet drop. It shows unwanted aggressiveness when

congestion occurs which multimedia applications doesn’t

want. To avoid [17] this situation different variations of TCP

were proposed for congestion control [18] such as TCP-New

Reno [3], TCP-Vegas [4], TCP-Reno [5], and TCP-Tahoe [6]

etc. All of these try to modify the Additive Increase

Multiplicative Decrease (AIMD) [16] [19] strategy to improve

TCP performance. TCP was not primarily designed to support

streaming media traffic, the saw-tooth behavior of TCP effects

the perceived video quality. So, TCP need more improvements

to support congestion control for real-time streaming media

traffic.

User Datagram Protocol (UDP) [7] is selected for data transfer

in higher rates even though it is unreliable. UDP doesn’t

support any congestion control mechanism this can lead to

instability in the network. To solve all these problems a new

protocol is designed by Internet Engineering Task Force

(IETF) called TCP Friendly Rate Control (TFRC) [8]. TFRC is

a reliable protocol for streaming applications and also it

supports congestion control mechanism very effectively. It is

an equation based approach rather than window based.

The rest of this paper is: Section 2 introduces the various TCP

variants briefly that are previously published under related

work. Section 3 describes our TFRC mechanism. Section 4

describes the performance metrics that are used to evaluate

TFRC. Section 5 presents the simulation environment. Section

6 presents Results and Analysis of TFRC with other TCP Flows

and UDP. Finally, Section 7 presents the conclusions and future

enhancements.

2. RELATED WORK

Before Coming to TFRC there were a lot of research work has

been done. There were many changes applied to the TCP to

improve for supporting real-time media traffic. Some of those

efforts are shown below.

 TCP TAHOE

 TCP RENO

 TCP VEGAS

 TCP NEW RENO

2.1 TCP-Tahoe

It is a simple modification of TCP protocol which includes Fast

Retransmit mechanism. In Tahoe [6] triple duplicate

Acknowledgements (ACKs) are treated as the same as a time

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 2, Issue 1, May (2015)

ISSN: 2395-5317 ©EverScience Publications 69

out then Tahoe will perform Fast Retransmit. In Fast

Retransmit, the slow start threshold set to half of the current

window size, reduces congestion window to 1 Maximum

Segment Size (MSS), and it will reset to slow-start state.

2.2 TCP-Reno

By adding an additional functionality to TCP-Tahoe TCP-Reno

[5] was developed. Here along with Fast Retransmit, Fast

Recovery also added. In this mechanism if three duplicate

ACKs are received, Reno will halve the congestion window

instead of setting it to 1 MSS like Tahoe and sets slow start

threshold to the new congestion window, performs a Fast

Retransmit and enters a phase called Fast Recovery. If an

Acknowledgement times out, slow start phase is used as it is

with Tahoe.

In Fast Recovery state, TCP retransmits the missing packet that

was indicated by three duplicate Acknowledges, and wait for

an ACK of the whole transmit window before returning to

congestion avoidance phase. If there is no ACK, TCP Reno

experience a time out and enters the slow start state.

2.3 TCP Vegas

Until the mid-1990s, all of the TCP’s set time outs and

measured round trip delays were based upon only the last

transmitted packet in the transmit buffer. But in TCP-Vegas [4]

time outs were set and round trip delays were measured for

every packet in the transmit buffer. In addition, TCP-Vegas

uses additive increases in the congestion window.

2.4 TCP New Reno

TCP-New Reno [3] improves retransmission during the fast

recovery phase of TCP Reno. It adds a small change to the

Reno algorithm at the sender. The change is the sender’s

behavior during fast recovery when a partial ACK is received.

The partial ACK do not acknowledges all the packets that were

out standing at the start of the fast recovery period but

acknowledges some of them. This means that there were

multiple loses in the same window of data.

In TCP-Reno, partial ACKs take TCP out of Fast Recovery by

deflating the usable window back to the size of congestion

window. In TCP-New Reno, partial ACKs do not take TCP out

of Fast Recovery. Instead, partial ACKs received during Fast

Recovery are treated as an indication that the packet

immediately following the acknowledged packet in the

sequence space has been lost, and should be retransmitted.

Thus, when multiple packets are lost from a single window of

data, New Reno can recover without a retransmission time out,

retransmitting one lost packet per RTT until all of the lost

packets from window have been transmitted. TCP-New Reno

remains in fast recovery until all of the data outstanding when

Fast Recovery was initiated has been acknowledged.

After all these efforts a new protocol TCP Friendly Rate

Control (TFRC) is designed and explained in next section.

3. PROPOSED MODELING

3.1 TCP Friendly Rate Control

TFRC [12] [13] is an end-to-end rate based congestion control

reliable protocol to suite multimedia applications. TFRC is

more suitable for real-time streaming data because of smooth

sending rate achieved by it. TFRC is capable of dynamically

adjusting next sending rate at the sender side when congestion

occurs. The equation [11] [14] used by TFRC is shown in

equation 1.

𝑋 =
𝑠

𝑅𝑇𝑇√
2𝑏𝑝

3
+𝑅𝑇𝑂(3 √

3𝑏𝑝

8
)𝑝(1+32𝑝2)

 (1)

X is the sending rate in bytes/seconds

s is the segment size in bytes

RTT is the round trip time in seconds

b indicates the number of packets acknowledged by a single

ACK

p is the loss event rate (between 0 and 1)

RTO indicates the retransmission time-out in seconds (4RTT)

TFRC is a receiver driven mechanism, with the calculation of

the congestion control [21] data (i.e., the loss event rate) in the

receiver rather in the sender. The receiver must continuously

maintain and update the loss event history data structure and

continuously process the loss event rate and send it to sender

as soon as it observes an increase in the loss event rate as a

feedback.

3.2 Performance Metrics

End-to-End Delay : The average delay of all the packets while

travelling from source node to the destination node.

Packet Loss Ratio : The ratio of number of lost packets to the

sum of number of packets received and number of lost packets.

Packet Delivery Ratio : The ratio of total number of packets

successfully received by the destination nodes to the number of

packets sent by the source nodes.

4. SIMULATION ENVIRONMENT

The performance of the proposed TFRC is evaluated using the

network simulator version ns-2.35 [9] [15], and the simulation

results compared with all other TCP variants and UDP. The

network topology used in this paper is a simple network

dumbbell topology as shown in fig. 1.

Figure 1 shows a simple network topology consisting of six

source nodes and six destination nodes. The access link

capacities were 2 Mbps and the bottleneck capacity between

nodes R0 and R1 also 2 Mbps. The access links delay was

0.002 seconds.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 2, Issue 1, May (2015)

ISSN: 2395-5317 ©EverScience Publications 70

Fig. 1: Simple network dumbbell topology

5. RESULTS AND DISCUSSIONS

In this paper, we compare the performance of TCP-Tahoe,

TCP-Reno, TCP-Vegas, TCP-Newrono, TFRC and UDP

through Packet Delivery Ratio, Packet Loss Ratio, End-to-End

Delay.

In figure 2, it shows end-to-end delay of TFRC is equal to TCP

flows up to 4 Mbps, later compare to UDP, TFRC gives far

better results. The end-to-end delay of TFRC is less than UDP.

The end-to-end delay of TCP New Reno is second best protocol

in all TCP flows. TCP Tahoe and Reno are giving least results.

Here, we incremented UDP rate and TFRC rate simultaneously

and also changing TCP window sizes for all other TCP flows.

The reason why TFRC has better end-to-end delay is its

dynamically adjusting next sending rate behaviour and no need

to wait for feedback of each packet. When ever packet loss

occurs then only it wait for feedback and adjusts its next

sending rate with out loosing its fair share of bandwidth.

Figure 2: End-to-end delay of TFRC, UDP and TCP variants

In figure 3, it shows packet loss ratio of TFRC is almost

friendly with TCP flows up to 4 Mbps, later compare to UDP,

TFRC has low packet loss ratio. The packet loss ratio of TCP

Newreno is second best protocol in all TCP flows. TCP Tahoe

and Reno are giving least results. Here, we incremented UDP

rate and TFRC rate simultaneously and also changing TCP

window sizes for all other TCP flows. Here, the packet loss

ratio of TFRC is far better than UDP because at higher rates

also TFRC preserves reliability with low end-to-end deay.

Figure 3: Packet Loss Ratio of TFRC, UDP and TCP variants

In figure 4, it shows Packet Delivery Ratio of TFRC is almost

friendly with TCP flows up to 4 Mbps, later compare to UDP,

TFRC has good packet delivery ratio. The packet loss ratio of

TCP Vegas is second best protocol in all TCP flows. TCP

Newreno and Reno are giving least results. Here, we

incremented UDP rate and TFRC rate simultaneously and also

changing TCP window sizes for all other TCP flows. The

packet delivery ratio of TFRC is very good because it always

follows the TCP flows at normal rates as we know TCP has

good packet delivery ratio and also when compare to udp at

higher rates because of its congestion control mechanism

TFRC has good packet delivery ratio.

Figure 4: Packet Delivery Ratio of TFRC, UDP and TCP

variants

0

100

200

300

1 1 . 2 5 2 . 4 8 4 4 . 5 4 . 8 5EN
D

-T
O

-E
N

D
 D

EL
A

Y
 (

m
s)

TFRC RATE (Mbps)

END-TO-END DELAY

tfrc tcp-newreno tcp-vegas

tcp-reno tcp-tahoe udp

0

0.5

1

1.5

1 1 . 2 5 2 . 4 8 4 4 . 5 4 . 8 5

P
A

C
K

ET
 L

O
SS

 R
A

TI
O

 (
%

)

TFRC Rate (Mbps)

PACKET LOSS RATIO

tfrc tcp-newreno tcp-vegas

tcp-reno tcp-tahoe udp

0.75

0.8

0.85

0.9

0.95

1

1.05

1 1 . 2 5 2 . 4 8 4 4 . 5 4 . 8 5

P
A

C
K

ET
 D

EL
IV

ER
Y

 R
A

TI
O

 (
%

)

TFRC Rate (Mbps)

PACKET DELIVERY RATIO

tfrc tcp-newreno tcp-vegas

tcp-reno tcp-tahoe udp

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 2, Issue 1, May (2015)

ISSN: 2395-5317 ©EverScience Publications 71

6. CONCLUSION

By examining all these simulation results we can easily say that

TFRC will be the best suitable protocol for real-time

multimedia traffic. It’s dynamically changing rate based

congestion control approach is the so far best compare to all

TCP flows. TFRC is capable of replacing both TCP and UDP.

We can surely say that by observing these results, we can use

TFRC for low and high data rates as a most reliable protocol.

At higher rates we can say that TFRC is having higher packet

delivery ratio. In Future, by shifting the overall receiver

functionality like calculating packet loss ratio to sender, the

performance of TFRC can be improved by reducing additional

load on receiver and the delay for receiving feedback from

receiver can be reduced.

REFERENCES

[1] K. Satyanarayan Reddy and Lokanatha C. Reddy, “A survey on

congestion control mechanisms in high speed networks,”

IJCSNSInternational Journal of Computer Science and Network
Security, vol. 8, no. 1, pp. 187 – 195, 2008.

[2] J. Postel, "Transmission Control Protocol", RFC-793, September 1981.

[3] Mohammad Reza and Reza Kourdy, “Tcp-newreno buffer management
in network on chip,” Journal of Computing, vol. 4, no. 7, pp. 128-130,

Jul. 2012.

[4] Mao Kai, “A logarithmic slow-start algorithm of tcp-vegas in ip
networks,” Applied Mathematics and Information Sciences, vol. 7 no. 2,

pp. 599-605, 2013.

[5] M. Nirmala, R.V. Pujeri, “Performance to tcp-vegas, bic, and reno
congestion control algorithms on iridium satellite constellations,”

International Journal of Computer Network and Information Security,

vol. 4, no. 12, pp. 40-49, Nov. 2012.

[6] TeamourEsmaili, A. N. rad, and Ghazal Lak, “Effect of multiple fast-

retransmission of tcptahoe in decagon noc,” Journal of Computing, vol.

4, no. 6, pp. 206-209, Jun. 2012.

[7] J. Postel, "User Datagram Protocol", RFC 768, August 1980.
[8] Handley, Floyd, Widmer and Padhye, “TCP-Friendly Rate Control

(TFRC): Protocol Specification”, IETF RFC 5348, April 2008.

[9] The VINT Project, “The ns Manual (formerly ns notes and
documentation)”, http://www.isi.edu/nsnam/ns/ns-ddocumentation.html,

November 2011.

[10] Soo-Hyun Choi, “Congestion Control for Real-time Interactive
Multimedia Streams,” Ph. D. Thesis, University College London,

Computer Science Dept., 2010.
[11] Agnieszka Chodorek and Robert R. Chodorek “Streaming Video over

TFRC with Linear Throughput Equation,” Advances in Electronics and

Telecommunications, vol. 1, no. 2, Nov. 2010.
[12] Lisong Xu and Josh Helzer, “Media Streaming via TFRC: an Analytical

Study of the Impact of TFRC on User-perceived Media Quality,”

Computer Networks, vol. 51, no. 17, pp. 4744-4764, 2007.

[13] S. Tsao, Y. Lai, and Y. Lin, “Taxonomy and Evaluation of TCP-Friendly

Congestion Control Schemes on Fairness, Aggressiveness, and

Responsiveness.” IEEE Network, vol. 21, no. 6, , pp. 6-15, 2007.
[14] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based

congestion control for unicast applications,” in Proc. ACM SIGCOMM,

Stockholm, Sweden, pp. 43 – 56, Aug. 2000.
[15] University of California Berkeley, “The network simulator - ns-2,”

[Online] http://www.isi.edu/nsnam/ns.

[16] Y. Yang and S. Lam, “General AIMD Congestion Control,” Proc. IEEE
ICNP 2000, Nov 2000, pp. 187–98.

[17] B. Braden, D. Clark, and J. Crowcroft, “Recommendations on Queue

Management and Congestion Avoidance in the Internet,” RFC 2309, Apr.
1998, http://www.ietf.org

[18] D. Bansal et al., “Dynamic Behavior of Slowly-Responsive Congestion

Control Algorithms,” Proc. ACM SIGCOMM ’01, Aug. 2001, pp. 263–
74.

[19] A. Lahanas and V. Tsaoussidis, “Exploiting the Efficiency and Fairness

Potential of AIMD-based Congestion Avoidance and Control,” Comp.
Networks, vol. 43, no. 2, Oct. 2003, pp. 227–45.

[20] J. Widmer, R. Denda, and M. Mauve, “A Survey on TCP-friendly

Congestion Control,” special issue of the IEEE Network Control of Best
Effort Traffic, vol. 15, no. 3, May–June 2001, pp. 28–37.

[21] G. Jourjon, E. Lochin, and L. Dairaine, “Optimization of tfrc loss history

initialization,” Communications Letters, IEEE, vol. 11, no. 3, pp. 276–
278, March 2007.

Authors

Balakoteswara Panchakshari received B.Tech

degree in Computer Science and Engineering from

Annamacharya Institute of Technology and
Sciences, Rajampet, affiliated to JNTUA College

of Engineering, Anantapuramu, A.P, India, during

2008 to 2012. Currently pursuing M.Tech in
Computer Science from JNTUA College of

Engineering, Anantapuramu, A.P, India, during
2013 to 2015 batch. His Area of interests include

Computer Networks, Network Security.

C. Shoba Bindu is an Associate Professor of

Computer Science and Engineering at Jawaharlal

Nehru Technological University College of
Engineering, Ananthapuramu. She obtained her

Bachelor degree in Electronics and

Communication Engineering, Master of
Technology in Computer Science from Jawaharlal

Nehru Technological University Hyderabad and

Ph.D. in Computer Science and Engineering from

Jawaharlal Nehru Technological University

Anantapuramu. She has published several Research papers in National \

International Conferences and Journals. Her research interests includes
network security and Wireless communication systems.

http://www.isi.edu/nsnam/ns
http://www.ietf.org/

